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Abstract.  The gap structure and pairing mechanism for iron based superconductors is 

hotly discussed as a central issue since their discovery. The energy band structure of iron 

based superconductors is calculated by a tight-binding two band model with the 

coexistence of superconductivity and Jahn-Teller distortion. We have proposed here a s±-

wave pairing symmetry of the form coskx × cosky in a two-band model for the coexistence 

of the two order parameters in the mean field approximation. The model is solved by 

Zubarev’s double-time Green’s function technique to find their selfconsistent gap 

equations and are solved self-consistently numerically. The band energies are discussed. 

Keywords: Iron based superconductors; Superconducting gap; Jahn-Teller effect; Band 

energies. 
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1 Introduction 

The discovery of iron-based superconductors (FeSCs) with different chemical 

compositions [1], such as 1111-material (LaFeAsO), 122-material (BaFe2As2), 

111-material (NaFeAs) and 11-material (FeSe) have opened a new field to study 

the high temperature superconductivity. These superconductors motivated 

research on two-band superconductors where the pairing between electrons is 

produced by interband electronelectron repulsion [2, 3]. The pairing in the FeSCs 

is a strong coupling phenomenon and the pairing gap is not confined to the Fermi 

surface. This phenomenon was interpreted [4] on the observation of a sizeable 

superconducting gap on a band which does not cross the Fermi level. For the 
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FeSCs, different materials have different structures of the superconducting (SC) 

gap which may indicate that the gap symmetry in FeSCs is material dependent [2, 

5, 6]. Both hole and electron pockets are observed in doped FeSCs and the gap 

symmetry there is like the s
±
-wave state [3]. The theoretical model is described in 

section 2, the calculation of electron Green’s functions which relate the order 

parameters of the SC and the Jahn-Teller(JT) distortion are in section 3. The 

discussions of the results obtained are described in section 4 and concluded in 

section 5. 

2 Theoretical Model 

The assumption of the crystal field splitting and the orbital hopping effect 

considers the      and      orbitals of Fe for low energy physics discussions 

[7]. Here we have considered a model Hamiltonian for the coexistence of SC and 

JT interactions in the s
±
-wave symmetry and solved selfconsistently. The hopping 

of the conduction electrons between the neighbouring sites of the two degenerate 

orbits of Fe
2+

 is described by the Hamiltonian H0 as 

  † † †

0 , , , , , , , , , , , ,

, ,

( ) . . .k i k j k i k j k

k

H c c c c H c       

 

 
         (1) 

Here, 
†

, , , , , ,( )i k i kc c    and 
†

, , , , , ,( )j k j kc c    are creation (annihilation) operators of 

the conduction electrons of iron ions at two neighbouring sites i and j and two JT 

distorted orbitals α = 1 and 2 respectively, with momentum k and spin σ. We 

assume a simple nearest-neighbour hopping tight-binding form 

02 (cos cos )k x yt k k    on a square lattice, where t0 is the hopping integral. 

 The lattice distortion via JT effect [8, 9] may be from the degeneracy of 

     and     . The structural transition from tetragonal to orthorhombic 

distortion is exhibited by the iron pnictide superconductors. This is described by 

a two level configurational distortion at each distorted tetrahedron where the Fe 

ion exists. The population difference between the two bands is observed in the 

degenerate conduction band due to the presence of the tetragonal distortion. The 

lattice strain splits the single degenerate band into two band energies 

1,2 ( ) kk Ge   with the increase of the population difference. Here, the 

strength of the electron-lattice interaction is denoted by G and the strength of the 

static lattice strain by e. Now the JT Hamiltonian is described as 
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† 2
, , , , , , 0

, ,

1
( 1) ( ) . .

2
JT i k j k

k

H Ge c c H c C e
   

 

 
    

 
 ,   (2) 

where the lattice strain e is defined as 

  
† †
, , , , , , , , , , , ,

, ,0

( 1) .i k j k j k i k

k

G
e c c c c

C


       

 

 
          

 
   (3) 

Here, 
21

02
C e represents the elastic energy of the system with C0 being the elastic 

constant. Under the condition that the gain in electronic energy is more than the 

elastic energy 
21

02
C e  then the strain is stabilised. 

The superconductivity comes from Cooper pairs in the Fe-Fe plane. Here, the 

superconductivity is introduced to the system through the BCS pairing 

interaction, which is assumed to be existing only within the same orbitals and the 

same strength of the interactions. So the mean-field pairing Hamiltonian is 

written as 

  † † † † †

, , , , , , , , , , , , , , ,
,

( ) . . ,SC k i k i k j k j k j k
k

H c c c c c H c
    


      

     
    (4) 

where α=1, 2. For s
±
-wave symmetry the SC gap parameter will be 

( ) cos cos .k x yT k k    Now, the momentum dependent superconducting gap 

parameter     is defined as 

  
† † † †

, , , , , , , , , , , ,
, ,

( ) ( ) ,k i k i k j k j k
k k

V k k c c c c
   


        



           (5) 

here  ̃ is the effective exchange interactions [10] of the SC order parameter and 

is expressed as   ̃ (    )           with (           ). Here, we 

consider the s
±
-wave pairing form factor as            . Now, the total 

Hamiltonian describing the system is given by 

  0 .JT SCH H H H             (6) 

3.  Calculation of order parameters 

The Zubarev’s single particle double-time Green’s function technique [11] is 

being used to calculate the Green’s functions for the Hamiltonian in eqn.(6). For 

site i the Green’s functions are defined as 
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† † †

1 , , , , , , 2 , , , , , ,( , ) ; ; ( , ) ;i k i k i k i kA k c c A k c c                

  
† † †

3 , , , , , , 4 , , , , , ,( , ) ; ; ( , ) ; .j k i k j k i kA k c c A k c c                

The Green’s functions for site j are defined as 

  
† † †

1 , , , , , , 2 , , , , , ,( , ) ; ; ( , ) ;j k j k j k j kB k c c B k c c                

  
† † †

3 , , , , , , 4 , , , , , ,( , ) ; ; ( , ) ; .i k j k i k j kB k c c B k c c                

The solution of these Green’s functions gives us two quasi particle energy bands 

  (     ) calculated to be 

  
2 2 2 2

1 1 2 2; .k k k kE E            (7) 

Here,              and we have      (     ) i.e., there is the 

interference of the two gap parameters. The expression for free energy is the 

standard for the coexistence state of SC and JT phase which is written as 

       ∑   ,     *    ( )+-     with   
 

   
     and T are the 

Boltzmann constant and the absolute temperature respectively. Here, throughout 

the calculations, we have considered 1.Bk  . The minimisation of the above 

equation with respect to 0F
e



 e i.e, gives the selfconsistent gap equation for 

strain e. The eqn.(3) comes from such kind of minimisation which is written as 

  1 22 2
0 1 2

1
{ ( , ) ( , )}

2 k

Ge
e F k T F k T

C  

 
   

 
           (8) 

where 

    1,22 2
1,2 1,2 1,2

1,2

1
( , ) tan .

2
F k T E h





   

The Green’s functions   (   ) and   (   ) define the SC gap parameter of 

eqn.(5) as 

   3 42 2
1 2

1 1
( , ) ( , ) ( , )

2
k

k

V k k F k T F k T
 

 
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 
    (9) 
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where 
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Fig. 1: The individual and selfconsistent plots of the SC gap z and lattice strain 

energy e′ vs reduced temperature t for fixed values of SC coupling g = 0.32 and 

the JT coupling g1 = 1.42. 

 The k-sum involved in eqns.(8) and (9) is converted into integral form which 

leads to double integrals for    and    variables in a − b plane. The summation 

2(2 )
(0) S

x yk
N dk dk


    in FeAs plane with appropriate limits of integration 

and S is the area of the square lattice and N(0) is the conduction electron density 

of states around Fermi surface. 

4.  Results and Discussion 

The coupled equations (8) and (9) for the the JT gap (e′ = g1 × e) and the SC gap 

(z) respectively are solved self-consistently numerically. We have considered the 

half-filling band situation with the Fermi level as zero to be lying at the middle of 

the band gap and the width of the conduction band 08 ( 1 ).W t eV  All the 

parameters involved in the gap equations are scaled by the conduction band width 

W. So, the dimensionless parameters are the SC gap 
0

( )

2
,

T
tz


 the lattice strain 

0
,e

ee  the reduced temperature 
02

,Bk T

t
t  the SC coupling constant    ( )     
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and the JT coupling constant 
0

(0)

1 2

GN

tg  . Figure 1 shows the plots of the two 

order parameters in the independent and coexistence states. In the independent 

state both the order parameters show mean-field behaviour and the reduced SC 

gap is calculated to be 
2 (0)

5.52,
B ck T


 which very high as compared to BCS 

universal value of 3.52. For the multi-orbital FeSCs the reduced SC gap value 

2 (0)

B ck T


is very high as compared to the universal BCS value of 3.52 [12, 13] which 

is an essential property of the FeSCs. In the coexistence state the JT order 

parameter is suppressed within the SC critical temperature tc and shows mean-

field behaviour beyond that without changing its distortion temperature td. The 

SC order is suppressed throughout the temperature range with the decrease of tc. 

The reduced SC gap value 
2 (0)

cBk T


 is enhanced to 6.11, because of the more 

decrease of tc. 

 

 

 

 

 

 

 

Fig. 2: Plots of energy bands and the bare dispersion    vs     for       in the 

independent  state using parameters from figure 1 for (a) z = 0.058, e′ = 0 and (b) 

z = 0, e′ = 0.115. 

The electronic structure and the high transition temperatures of the FeSCs 

suggest that the pairing interaction is of electronic origin. The band structure 

calculations have shown that, superconductivity in FeSCs is associated with the 

Fe layer [14, 15] and that the density of states near the Fermi level gets its 

maximum contribution from the Fe-3d orbitals. Equation (7) describes the two 

energy bands for the system. Figure 2 show the plots of energy bands and bare 

dispersion in the independent states. In figure 2(a) the energy bands show a gap 

equivalent to the SC gap (z = 0.058) and in figure 2(b) the same gap is equivalent 

to the JT gap (e′ = 0.115) at the Fermi surface. Figure 3 shows the plots of energy 

bands and bare dispersion in the coexistence state. In this plot we have two gaps 
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identified as I and II. The gap I at the kx = 0 is equivalent to 0.088, which 

corresponds to the value of 
2 2z e and the gap II is equivalent to 0.048, which 

corresponds to the value of 
2 2z e , which means that there is the interference 

of the two order parameters in the coexistence state. 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Plots of energy bands and the bare dispersion k vs kx for ky = π in the 
coexistence state using parameters from figure 1 for z = 0.052 and e′ = 0.071. 

5 Conclusion 

In this communication, we have discussed the interplay of two orders parameters 

i.e., SC and JT orders present in the iron pnictide systems. The interplay shows 

that there is a strong dependence of one another in the coexistence phase. The SC 

order parameter (z) is suppressed throughout the temperature range in the 

interplay region. As shown in different high-Tc superconductors, it is observed 

that the growth of lattice strain energy is arrested at tc. The superconducting 

transition is decreased more compared to the suppression of the SC gap at the 

zero temperature, resulting in the increase of the reduced SC gap parameter 
2 (0)

.
cBk T


 The band energy plots shows the clear existence of the SC gap the JT gap 

in the independent state and the interference of the two in the coexistence state. 
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